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Anomalous dephasing of bosonic excitons interacting
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Abstract. The dephasing and relaxation kinetics of bosonic excitons interacting with a thermal bath of
acoustic phonons is studied after coherent pulse excitation. The kinetics of the induced excitonic polariza-
tion is calculated within Markovian equations both for subcritical and supercritical excitation with respect
to a Bose-Einstein condensation (BEC). For excited densities n below the critical density nc, an exponen-
tial polarization decay is obtained, which is characterized by a dephasing rate Γ = 1

T2
. This dephasing

rate due to phonon scattering shows a pronounced exciton-density dependence in the vicinity of the phase
transition. It is well described by the power law Γ ∝ (n − nc)2 that can be understood by linearization
of the equations around the equilibrium solution. Above the critical density we get a non-exponential re-
laxation to the final condensate value p0 with |p(t)| − |p0| ∝ 1

t
that holds for all densities. Furthermore

we include the full self-consistent Hartree-Fock-Bogoliubov (HFB) terms due to the exciton-exciton inter-
action and the kinetics of the anomalous functions Fk = 〈aka−k〉. The collision terms are analyzed and
an approximation is used which is consistent with the existence of BEC. The inclusion of the coherent
exciton-exciton interaction does not change the dephasing laws. The anomalous function Fk exhibits a
clear threshold behaviour at the critical density.

PACS. 71.35.Lk Collective effects (Bose effects and excitonic phase transition) – 71.35.-y Excitons
and related phenomena

1 Introduction

Bose-Einstein condensation (BEC) is a fascinating topic
attracting new interest, due to recent experimental obser-
vation for BEC of atomic ensembles [1,2] and evidence for
BEC of excitons in semiconductors [3–6]. In spite of the
many similarities between bosonic atoms and excitons in
semiconductors with large binding energy, the BEC of the
latter has the interesting specific feature that the order
parameter of the excitonic condensate is identical to its
optical polarization. Therefore it is directly accessible by
relatively simple optical measurements. This fact stimu-
lated theoretical predictions of unusual nonlinear optical
properties in the condensed regime [7].

In this paper the decay of the polarization p (= order
parameter) is studied after excitation with a coherent laser
beam, if one approaches the critical density nc for a BEC,
where an unusual dephasing kinetics can be expected. Un-
like most studies of the condensation kinetics [8–10], here a
large macroscopic occupation of the condensate is created
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by the excitation process via allowed optical transitions.
This induced exciton amplitude may then decay to its zero
or nonzero stationary value. The final stationary solution
is perfectly described by the equilibrium theory of the free
Bose gas.

One of the most promising candidates for an excitonic
BEC is Cu2O [11] with its extremely stable excitons. Due
to its dipole forbidden exciton transition, an experiment
corresponding to our simulations would use two-photon
transitions for the excitation of ortho-excitons and a time-
resolved polarization measurement via the same mecha-
nism [12]. Although for a detailed quantitative simulation
of such an experiment, additional effects like polariton ef-
fects [13], lifetime effects [10] and the subtle excitation
mechanism will play a role even in the low density limit,
our main predictions should be observable at least quali-
tatively also in Cu2O close to a BEC.

2 Incoherent relaxation and dephasing
kinetics for excitons interacting
with a bath of acoustic phonons

1s-excitons with center-of-mass momentum k are treated
in the boson approximation, i.e. the exciton operators
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fulfill the commutation relation
[
ak, a

+
k ′

]
− = δk,k ′ . This

approximation is only justified in semiconductors with
large exciton binding energy, when na3

0 � 1 and mainly
1s-excitons are excited. These excitons interact with lon-
gitudinal acoustic phonons and a coherent classical light
pulse via a dipole interaction. The Hamiltonian is given by

H =
∑
k

eka
†
kak +

∑
q

~ωqb
†
qbq (1)

+
1√
V

∑
k,q

gqa
†
k+qak(bq + b†−q)−

√
V
(
dE(t)a†0 + h.c.

)
with the dispersion of the excitons and phonons

ek =
~2k2

2m
, ωq = c|q|, (2)

respectively, wherem is the translational exciton mass and
c the sound velocity. The deformation potential matrix
element

gq = G
√
~ωq (3)

in the long-wave length limit. The interaction constant G
is given in terms of the deformation potential D and the
crystal density ρ by G2 = D2

ρc2 . The finite photon momen-
tum has been neglected.

We define further the exciton distribution function
nk = 〈a†kak〉 with k 6= 0 and the exciton polarization
amplitude p = 1√

V
〈a0〉.

One gets a closed set of kinetic equations for the po-
larization p and the exciton occupation nk, by extending
the standard method for deriving a semiclassical Boltz-
mann equations also to the order parameter p [8]. The
Heisenberg equations for 〈a0〉 and 〈a+

k ak〉 are iterated to
second order in the interaction potential gq. The higher or-
der mean-values are factorized and the only correlations
kept are p and nk, e.g.

〈aa+ab+b〉 ≈ (1 + 〈a+a〉)〈a〉〈b+b〉+ 〈a〉〈a+a〉〈b+b〉.
Neglecting principal value contributions as well as finite
lifetime effects and performing the Markov limit, one ar-
rives at [8]

∂

∂t
nk = − 1

V

∑
k ′

{Wkk ′nk(1 + nk ′)− (k
 k ′)}

− [Wk0nk −W0k(1 + nk)] |p|2 (4)

∂

∂t
p =

1
2V

∑
k ′

[Wk ′0nk ′ −W0k ′(1 + nk ′)] p

+
i

2~
dE0(t). (5)

The transition rates are given by Fermi’s golden rule

Wkk ′ =
2πG2

~
|ek − ek ′ |

[
Nk ′−kδ(ek − ek ′ + ~ωk ′−k)

+ (1 +Nk−k ′) δ(ek − ek ′ − ~ωk−k ′)
]
, (6)
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Fig. 1. Complete exponential dephasing for excitation with
n < nc.
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Fig. 2. Non-exponential approach of the exciton amplitude to
condensation for excitations with n > nc. Full line - calculated
polarization, dashed line - value predicted from equilibrium
theory of the Bose-gas.

where Nk = 1
eβ~ωk−1

is the thermal distribution of
the phonons. The delta-functions are broadened into
Lorentzians according to [8]. In what follows (except in
the last section) we will study the consequence of these
equations.

3 Laser pulse induced Bose Einstein
condensation

The strength of the laser pulse can be varied to excite
densities below (see Fig. 1) and above (see Fig. 2) the
critical density for the BEC. The laser pulse is tuned to the
lowest 1s-exciton resonance and has a duration of 2.5 ns.
As an example ZnSe parameters have been chosen at a
low temperature of 0.5 K. Although the BEC in ZnSe
may be unlikely, this semiconductor with its dipole allowed
excitons serves well to demonstrate our ideas, which may
hold for different experimental setups and materials.

In Figures 1 and 2 a light pulse induced condensa-
tion is obtained. At excitation densities below the criti-
cal density the polarization |p| decays exponentially un-
til it vanishes as expected from usual optical experi-
ments (Fig. 1). At stronger excitations above the critical
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Fig. 3. Density dependence of the dephasing rate Γ for nc =
2× 1015 cm−3.

density, the exciton polarization approaches non-
exponentially its finite stationary value (Fig. 2), which is
non-zero due to the onset of condensation. This station-
ary polarization is given in terms of the excited density n
and the temperature T in the form of |p0| =

√
n− nc(T )

as expected form the equilibrium theory of the Bose gas.
Obviously the finite lifetime of the excitons due to spon-
taneous recombination will eventually cause an additional
dephasing and a decay of the exciton density.

4 Critical slowing-down of the dephasing
for approaching the critical density
from below

Below the critical density the decay of the polarization is
exponential, therefore a dephasing time T2 and a dephas-
ing rate Γ = 1

T2
can be defined. We study the exciton-

density dependence of these quantities as one approaches
the critical density from below. It is generally assumed
that the contribution of the phonons to the dephasing rate
is approximately density-independent. We can reproduce
this result for moderate densities but do get a considerable
reduction of the dephasing rate near the critical density
as shown in Figure 3. The density dependence of the de-
phasing rate can be fitted extremely well by a quadratic
law

Γ ∝ (n− nc)2, (7)

which vanishes at the critical density, as also shown in
Figure 3. This characteristic slowing-down of the exciton-
dephasing kinetics can serve as a first experimental sign
for the approach to the BEC.

A similar result has been observed also for exciton-
exciton scattering within similar rate equations [14] .

The quadratic law equation (7) can be derived ana-
lytically by linearizing equations (4) and (5) around the
stationary solutions |p0| and n0

k. For the deviation δp from
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Fig. 4. Asymptotic kinetics of |p(t)| for excitations with n >
nc, power law fit |δp(t)| ∝ 1

t+c dotted line. Exponential fit
dashed line.

the equilibrium value p0 = 0 one gets:

∂

∂t
δp =

1
2V

∑
k ′

[
Wk ′0n

0
k ′ −W0k ′(1 + n0

k ′)
]
δp. (8)

Therefore one can immediately conclude that the final de-
cay for n < nc is exponential and furthermore

Γ =
1
T2

=
1

2V
(1− eβµ)

∑
k

Wk0
1

eβek − eβµ
· (9)

On the other hand (1− eβµ) ∝ (n−nc)2 holds as an exact
thermodynamic relationship between the leading terms for
µ ≈ 0 and n ≈ nc. However, the relation is relatively well
obeyed even for large departures from the critical values,
as can be checked by a simple numerical calculation. Fur-
thermore, due to the structure of the transition rates equa-
tion (6), the main contribution in the sum of equation (9)
stems from the k-values away from the origin (the non-
zero solution of the delta-function). Therefore, for small
temperatures the µ-dependence of the sum is weak and
does not affect the (n− nc)2 behaviour of its prefactor.

5 Power law relaxation to the equilibrium
condensate for n > nc

While the polarization |p| vanishes exponentially at sub-
critical excitation, it reaches its stationary value |p0| =√
n− nc 6= 0, when the excited density n exceeds nc. But

in contrast to the subcritical behaviour, this approach to
equilibrium of the ideal Bose gas is not exponential any
more. In contrast the dephasing kinetics is well described
by a simple power law,

|p(t)| = |p0|+ a/(t+ b), (10)

as shown in Figure 4.
The slow non-exponential approach to equilibrium for

n > nc would also give in experiments sensitive to coher-
ence a clear signature for the BEC, which may be observ-
able even when the final condensate is small and cannot
be detected clearly.
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Above the critical density the same linearization pro-
cedure like the one used in the last section but with µ = 0,
p = p0 + δp and p0 6= 0 yields

∂

∂t
δp =

1
2V

∑
k

(1− e−βek)Wk0δnkp
0. (11)

As shown in reference [8], the long-time behaviour for δnk
is not exponential. The spectrum of the linear operator
controlling the t → ∞ asymptotics of δnk is continu-
ous and starts from zero. Therefore, it is expected that
a power-law decay is obeyed, which is in accordance with
our numerical results.

6 Combination of phonon-scattering
with HFB-correlations

The model used in the last sections may be useful to
describe the incoherent dephasing and relaxation phe-
nomena of the light-induced BEC. However, it does not
account for a variety of interesting and important phe-
nomena, where exciton-exciton correlations play an im-
portant role. These excitonic correlations are known to
be important for the nonlinear optical response of semi-
conductors [15–17]. Additionally, essential aspects of the
BEC can be only understood in terms of an interacting
Bose-gas. These phenomena are e.g. superfluidity [3,4],
the renormalized spectrum of the elementary excita-
tions and some interference phenomena based on the
Gross-Pitajevski equation. These effects are taken into
account by the self-consistent Hartree-Fock-Bogoliubov
treatment of the boson-boson interaction that is also
called Girardeau-Arnowitt approximation. The impact of
this approximation on the BEC has been reviewed e.g. in
references [18]. We will now give a guideline how to in-
clude the HFB approximation in the phonon scattering
kinetics in such a way, that the results of the last sections
are conserved, but moreover coherent aspects are taken
into account.

In the following the derivation of these equations is
described.

To the Hamiltonian equation (1) the exciton-exciton
interaction H ′ with a contact potential W is added

H ′ =
1

4V

∑
k1,k2,q

Wa+
k1
a+

k2
ak1+qak2−q. (12)

The interaction matrix element W between the excitons
is in general given by a momentum-dependent expecta-
tion value of the Coulomb interactions between the various
point charges in the two excitons containing both the at-
tractive direct and the repulsive exchange interaction. In
a low-temperature exciton system the small momentum
transfer dominates. In this limit the direct interaction can
be neglected and the exchange integral can be calculated
analytically [19]. This yields a repulsive contact potential
with the coupling constant

W =
26
3
πa3

0Er. (13)

Here a0 and Er are the Bohr radius and the Rydberg en-
ergy, respectively. Note however, that the possibility of a
biexciton formation is lost in this long-wavelength approx-
imation.

In the HFB approximation all possible contractions
have to be taken which conserve the one-particle struc-
ture of the Hamiltonian and its translational invariance.
Therefore we have to introduce additionally to p and nk
the anomalous function Fk(t) = 〈ak(t)a−k(t)〉. From the
viewpoint of the underlying e-h picture, the bosonic HFB
approximation includes also the dynamics of four-particle
correlations (two electron and two hole operators). There-
fore, correlations beyond the usual electronic HF approx-
imation are taken into account.

To derive the kinetics, the Heisenberg equations are
iterated to first order in W and to second order in g.
The mean-values of higher orders are then factorized as
explained in Section 2, only that now all possible con-
tractions are taken into account including the anomalous
function Fk. The phonon part (collision terms) is treated
in the Markov approximation and contributions from prin-
cipal value integrals have been neglected. Due to the fact
that the number of possible second-order phonon contri-
butions is quite large, all anomalous functions Fk are ne-
glected in the collision terms. We will show later that the
contributions of the anomalous functions to the collision
terms within the same approximation scheme make the
condensate unstable. In the language of diagram theory,
our approximation includes the HFB diagrams [14] and a
selection of second-order phonon scattering diagrams.

The resulting equations are

∂

∂t
nk =

W

~
=
{(

p2 +
1
V

∑
q

Fq

)
F ∗k

}
+
∂

∂t
nk|coll (14)

∂

∂t
Fk =− i

~

[
2ek + 2W (n0 +

1
V

∑
q

nq)

]
Fk

− i
2~
(
2nk + 1

)
W

(
p2+

1
V

∑
q

Fq

)
+
∂

∂t
Fk|coll(15)

∂

∂t
p = − i

~

[
e0 +

W

2
(n0 +

2
V

∑
q

nq)

]
p

− i
2~
W p∗

1
V

∑
q

Fq +
i

2~
d E +

∂

∂t
p|coll (16)

∂

∂t
nk|coll = − 2π

~V
∑
q

g2
k−q{δ(eq − ek − ~ωk−q)

×
[
Nk−qnk(1 + nq)− (Nk−q + 1)(1 + nk)nq

]
− (k↔ q)}

+
2π
~
g2
kδ(ek − ~ωk)n0(Nk − nk) (17)

∂

∂t
p|coll = − π

~V
p
∑
q

g2
q δ(eq − ~ωq)(Nq − nq) (18)

∂

∂t
Fk|coll = −2π

~
g2
kδ(ek − ~ωk)

[
p2(Nk − nk)

]
. (19)
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Fig. 5. Density n and n0 versus time t above the critical den-
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Fig. 6. Excitation at n < nc, comparison HF, without HF.

First we demonstrate that the addition of scattering
terms proportional to Fk in the collision terms of Fk equa-
tion (19) destroy the condensate, while omitting them
leads to a stable condensate solution. In Figure 5 a so-
lution of the equations is shown above the critical density.

While the coherent density n0 = |p|2 goes to zero if
the collision terms proportional to Fk (F 1-terms) are in-
cluded (see curves 3, 4), it condenses if only terms without
Fk (F 0-terms) are considered as done in equation (19) (see
curves 1, 2). For subcritical excitation the condensate de-
cays in both approximations.

The reason for the numerically obtained condensate
destroying properties of the anomalous contributions in
the collision terms are not yet fully understood. It can be
easily seen analytically that these terms are not in accor-
dance with the condensate solutions of the free Bose-gas.
However they are obviously also not yet fully compatible
with the condensation-solution of the interacting Bose-
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Fig. 7. Excitation at n > nc, comparison HF, without HF.
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Fig. 8. Asymptotic sum of the anomalous function Fk.

gas. More refined approximations like the inclusion of en-
ergy renormalizations in the collision integrals are needed.
An argument for omitting the contributions of the anoma-
lous functions to the second order scattering terms has
been proposed in reference [20]. Here it is argued that an
adiabatic elimination of Fk yields for a scattering term
containing one anomalous function a term of third-order
∝Wg2

q , which is inconsistent with the considered second-
order scattering. Although this argument is not rigorous
in a self-consistent theory, all collision terms proportional
to Fk are disregarded in the following.

We compare the prediction for the kinetics of the pure
phonon model equations (4, 5) and the full model equa-
tions (14-19) in two figures once below (Fig. 6) and once
above (Fig. 7) the critical density.

The results of the two models concerning dephasing
and relaxation can hardly be distinguished. We conclude
that all our results in the pure phonon model are stable
against Hartree-Fock-Bogoliubov correlations.

Additionally the introduced anomalous function Fk
shows a threshold behaviour as expected in a phase
transition. This is shown in Figure 8 where we plotted∑
k |Fk(t =∞)| versus the excitation density.
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To conclude this section, we presented a model which
does show the well-understood dephasing and condensa-
tion properties of the earlier introduced simpler boson
model, but additionally can be applied to experiments
where the coherence plays a more important role than
in simple studies of the dephasing.

7 Conclusion

It was demonstrated that the dephasing of an exciton po-
larization due to phonon scattering can have surprising
features, when the BEC is approached. For subcritical ex-
citation with a laser pulse, the polarization dephasing rate
slows down with increasing density in the vicinity of the
BEC with a quadratic power law. For supercritical ex-
citation the expected exponential dephasing changes to
a power law relaxation approaching a finite value. We
hope that these results may stimulate corresponding ex-
perimental investigations. In the last section it was shown
that condensation kinetics is very sensitive to the choice
of specific scattering terms (diagrams). A model is con-
structed which includes both the incoherent scattering due
to phonons and the HFB correlations. It has the same in-
coherent properties as the pure phonon model, but may be
also applied to experiments, where coherent correlations
are important.

This work has been supported by the DFG in the framework of
the Schwerpunktprogramm Quantenkohärenz in Halbleitern.
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